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Natural Frequencies of Euler-Bernoulli Beam with Open Cracks
on Elastic Foundations
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A study of the natural vibrations of beam resting on elastic foundation with finite number of

transverse open cracks is presented. Frequency equations are derived for beams with different

end restraints. Euler-Bernoulli beam on Winkler foundation and Euler-Bernoulli beam on

Pasternak foundation are investigated. The cracks are modeled by massless substitute spring.

The effects of the crack location, size and its number and the foundation constants, on the

natural frequencies of the beam, are investigated.
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1. Introduction

The analysis of beams on an elastic foundation
is developed on the assumption that the reaction
forces of the foundation are proportional to the
deflection of the beam. This assumption was in-
troduced by E. Winkler (Hetenyi, 1946). Paster-
nak proposed a foundation model consisting of a
Winkler-type foundation with shear interactions
(Rades, 1970).

Dynamics and stability of the Winkler-type
foundation model have been thoroughly investi-
gated by both approximate methods (De Rosa,
1989) and exact approaches (Farghaly and Zeid,
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1995 ; Maurizi et al., 1988). Some finite element
models for the static analysis of Euler-Bernoulli
beam resting on a Winkler-type foundation have
been given by Razaqpur and Shah (1991). The
same beam on a Pasternak two-parameter foun-
dation has been analyzed in an exact way by
Valsangkar and Pradhanang (1988), and the cor-
responding Timoshenko beam has been studied
by Rosa (1995).

In order to investigate the effects of damage
presented in the structure, several studies were
introduced through a simple reduction of the
stiffness in the mathematical model (Yuen, 1985 ;
Joshi and Madhusudhan, 1991). Christides et al.
developed a cracked Euler-Bernoulli beam theory
by deriving the differential equation and related
boundary conditions for a uniform beam with
one or two pairs of symmetric cracks. To deal
with the effects of cracks on the eigenparameters,
in some articles the beam was subdivided into
several beams, separated one another by cracks,
which were modeled by massless rotational spring
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(Narkis, 1994 ; Ostachowicz and Krawczuk, 1991).

The first purpose of this paper analyzes the
vibration of the Euler-Bernoulli beam with the
crack on elastic foundation like the Winkler and
the Pasternak foundations. Next, the results of
the Euler-Bernoulli beam on the Winkler foun-
dation is compared with the results of the Euler-
Bernoulli beam on the Pasternak foundation on
various combinations. Last, the effect of the loca-
tion of the crack and the depth of the crack is
investigated.

2. Dynamic Analysis

2.1 Euler-Bernoulli beam on Winkler foun-
dation

A beam with a crack on Winkler foundation is
shown in Fig. 1. The crack is located at point x;
illustrated in Fig. 1. The beam is assumed to be
composed of two segments connected by massless
substitute spring at crack location. The equation
of motion governing the flexural vibration of a
uniform rectangular beam is

Ely" + oAy + kry;=0,

xi1<x<x 1=1, 2 (20=0, xo=0L)

(1)

where E' is the Young’s modulus, [ is the mo-
ment of inertia of the cross-section, o is the ma-
terial density and ks is the Winkler foundation
modulus.

Assuming a steady-state solution

vi(x, H=Y:(x) ™ i=1,2 (2)

Substituting Eq. (2) into Eq. (1),

d'y.

W;_ (M=K Y:i=0 X;.1<X<X, i=1,2(3)
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The general solutions of Eq. (3) are

Y:(X)=A;cos(aX)+ B:sin(aX)
+ C; cosh(aX) + D; sinh(aX)

where A;, B;, C:, D; are constants (;=1, 2) and
a=A'—

(4)

2.2 Euler-Bernoulli beam on Pasternak
foundation
The differential equation of the transverse vi-
bration of a flexibly supported Euler-Bernoulli
beam on Pasternak foundation is

E{ 4 (0A—Go) v+ kry; =0,

xi1<x<x; 1=1, 2 (%=0, x.=0L)

(5)

where Gy is the shear modulus of foundation. A
steady-state solution is also assumed as Eq. (2).
Substituting Eq. (2) into Eq. (5),

dYe o dYe g
Xia<X<X;, i=1,2
s GoL*
where s°= El

The general solutions of Eq. (6) are

Y:(X)=A.cos(aX)+ B:sin(aX)
+ C; cosh(BX) + D: sinh(BX)

where A;, B;, Ci, D; are constants (i=1, 2)

(7)
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Fig. 1 Structural system of study
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2.3 Crack compliance

For compatibility of displacements, moments
and shear forces of both segments at the crack, the
angular displacement between the two segments
can be related to the following

Y1(h) =Y (k) (8)
Vi (h) =Y (&) )
Y (h) =Y (&)
Vi () — Y (h) =c Y™ (4)

(10)
(11)

where c is the flexibilities of the rotational springs
which are functions of the crack extent and beam
width. The c for one-sided crack can be expressed
as (Narkis, 1994).

c=5.346-h-f (&) (12)

where 7 is the height of the cross-section of the
beam, £=a/h, where a is the depth of the crack
and

F (&) =1.862482—3.9583+16.375&*
—37.226£°+76.81£5—126.9£7
+17268—143.96°466.56 £

(13)

2.4 Natural frequencies of a cracked beam
on foundation
The boundary conditions for the beams with
different end restraints are as follows

fixed: Y=0, Y®=0 (14, 15)
free: Y=0, Y =0 (16, 17)
supported : Y =0, Y¥®=0 (18, 19)

If Egs. (4) and (7) is inserted into Egs. (8) ~

(11) and boundary conditions, 8 by 8 matrix
equations is obtained. For two cracks, 12 by 12
matrix equation is obtained. Natural frequencies
are calculated by imposing zero value on the
determinant of this coefficient matrix.

3. Numerical Analysis and
Discussions

The Mathematica® version 4.0 has been used
for all the computational processes in this paper.
The cantilever beam under analysis has the fol-
lowing properties : length L=10 m, Young’s modu-
lus E= 2.068 X 10" N/m? material density o=
7850 kg/m®, rectangular cross section with width
b=0.25m and height 2=0.25 m.

Tables | and 2 respectively show the first na-
tural frequencies of fixed-fixed beam and sup-
ported-supported beam for the location and the
depth of a crack, K=10 and s=5. The results of
the Euler-Bernoulli beam on the Pasternak foun-
dation are bigger than the results of the Winkler
foundation. It shows that the frequencies of the
beam resting on a Pasternak foundation are hig-
her than those of the beam on a Winkler foun-
dation.

Table 3 shows the first three natural frequencies
of fixed-fixed beam for the depth of a crack, K=
10 and s=5.

Table 4 represents the increment(%) of the
first natural frequencies of the beam on Pasternak
foundation compared to those on Winkler foun-
dation on combination of fixed, simple-supported
and free end. Except the results of the fixed-free
beam, all results of the Euler-Bernoulli beam on

Table 1 A comparison between the first natural frequencies (Hz) for fixed-fixed beam on Winkler and those
on Pasternak foundation with respect to the crack ratio for K=10 and s=5

X, 1/8 1/4 1/2
a/h Winkler Pasternak Winkler Pasternak Winkler Pasternak
0.02 83.6699 105.669 83.6964 105.669 83.6401 105.578
0.04 83.5904 105.641 83.6920 105.638 83.4755 105.292
0.2 81.7961 105.001 83.5809 104.843 79.4647 98.1936
0.4 78.7395 103.889 83.3187 102.774 71.0004 82.4814
0.5 77.4239 103.403 83.1621 101.404 66.5043 73.6336
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Table 2 A comparison between the first natural frequencies (Hz) for supported-supported beam on Winkler
and those on Pasternak foundation with respect to the crack ratio for K=10 and s=5

Xi 1/8 1/4 1/2
a/h Winkler Pasternak Winkler Pasternak Winkler Pasternak
0.02 38.3844 69.6986 38.3727 69.6757 38.3561 69.6433
0.04 38.3705 69.6714 38.3251 69.5831 38.2014 69.4590
0.2 37.9790 68.8996 37.0428 67.0450 35.8669 64.7705
0.4 36.6236 66.0965 33.2729 59.2578 30.1536 53.3985
0.5 35.2968 64.6815 30.3605 55.3642 26.6241 46.2470

Table 3 A comparison between the first three natural frequencies (Hz) for fixed-fixed beam on Winkler and
those on Pasternak foundation with respect to the crack ratio for X;=1/8, K=10 and s=5

First Second Third
a/h Winkler Pasternak Winkler Pasternak Winkler Pasternak
0.02 83.6699 105.669 228.745 260.847 447.938 484.259
0.04 83.5904 105.641 228.742 260.849 447.766 484.011
0.2 81.7961 105.001 228.676 260911 443.708 478.022
0.4 78.7395 103.889 228.564 261.024 436.040 466.031
0.5 77.4239 103.403 228.515 261.077 432.468 460.198

Table 4 The increment (%) of the first natural fre-
quencies of the beam on Pasternak foun-
dation compared to those on Winkler foun-

the Pasternak foundation are higher.
Figures 2 and 3 respectively represent the first
and the second natural frequencies on the Pas-

dation ternak foundation for fixed-fixed beam with re-
Xi 1/8 1/4 1/2 spect to K=10 and s=35. It shows that the vari-
F-F and Fr-Fr 29.3 24.6 20.6 ations of natural frequencies are sensitive for the
S-S 81.7 80.9 78.9 location of the crack.
F-Fr —225 —23.6 —26.1 Figure 4 represents the first natural frequencies
F-S 51.9 45.9 39.8 on the Winkler foundation for fixed-fixed boun-
S-Fr 46.4 46.2 45.3 dary condition with respect to K=10 and X,=
*F : fixed, S: simply-supported, Fr: free 7/8.
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Fig. 2
crack position X;=x;/L for K=10 and s=5

The variations of the first natural frequencies for the fixed-fixed beam on Pasternak foundation due to
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Fig. 3 The variations of the second natural frequencies for the fixed-fixed beam on Pasternak foundation due
to crack position X;=x;/L for K=10 and s=5
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Fig. 4 The first natural frequencies of the fixed-fixed beam with two cracks on Winkler foundation for K=10

and X,=7/8

4. Conclusions

In this paper, the natural frequencies of the
cracked beam resting on elastic foundations are
investigated.

(1) Except the results of the fixed—fixed boun-
dary condition, the frequencies of the beam rest-
ing on a Pasternak foundation are higher than
those of the beam on a Winkler foundation.

(2) The location of the crack affects to the
changes in the frequencies of the natural vibra-
tions significantly.

(3) As the depth of the crack increases, the
frequencies decrease significantly.
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